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1 Introduction

Analysis of the rapid (or sudden) weather changes has real-world implications in

the transportation field such as improvement of transportation safety, mobility,

and efficiency in response to rapid weather changes. Weather acts through

visibility impairments, precipitation, high winds, and temperature extremes

to affect driver capabilities, vehicle performance (i.e., traction, stability, and

maneuverability), pavement friction, roadway infrastructure, crash risk, traffic

flow, and agency productivity. On average, there are over 5,748,000 vehicle

crashes each year. Approximately 22% of these crashes, nearly 1,259,000, are

weatherrelated. Weatherrelated crashes are defined as those crashes that oc-

cur in adverse weather (i.e., rain, sleet, snow, fog, severe crosswinds, or blow-

ing snow/sand/debris) or on slick pavement (i.e., wet pavement, snowy/slushy

pavement, or icy pavement). On average, nearly 6,000 people are killed and

over 445,000 people are injured in weather-related crashes each year [3]. These

safety and mobility factors make it important to develop new and more effective

methods to address road conditions during adverse weather conditions.

Existing techniques to detect a change point in weather conditions [4, 5,

6, 7, 8] either do not work with sensor networks or explore only regular-shaped

subsets. The impact of weather conditions on traffic conditions has been studied

in [9, 10, 11, 12, 13, 14, 15, 16], however, the impact of rapid weather changes

on traffic conditions is not well-explored. Also, [17, 18, 19, 20] study the

single point traffic flow forecasting, however, there is no multi-point traffic flow

forecasting model that can deal with distribution changes. This project aims to

address three main research questions:

• How can rapid weather changes in a highway network be detected in real

time using the streaming multivariate weather information collected from

weather stations near the network?

• How can rapid traffic flow changes in the highway network be detected

in real time using the steaming traffic flow information collected from the

highway network sensors?

• How can the significance of correlations between rapid weather changes

and traffic flow changes in space and time be well assessed?

The remainder of this report is organized as follows: Section 2 reviews ex-

isting literature on rapid weather change detection. Section 3 proposes the

modeling of real weather station network and Traffic Message Channel network

into graphs and provides details about data processing. Section 4 introduces our

research methodology. Section 5 presents the experiment and numerical results

followed by the concluding remarks and future research directions in Section 6.

2 Literature Review

The literature review is organized based on the three research questions as

discussed in the previous section.
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1) Detection of rapid weather changes. This is also called a change

point detection problem, and refers to the identification of abrupt variation of

weather variables (e.g., temperature, humidity, wind, gust, pressure, and solar

radiation) in a certain geographic region and a time point due to distributional

or structural changes. A number of algorithms are available for change point

detection, including detection of a change point in a univariate or multivari-

ate time series collected from a single sensor node (weather station) [4, 5, 6],

and detection of a change point in a collection of multivariate time series from

multiple sensor nodes in a sensor network, where an unknown subset of sensor

nodes are affected by the change point [7, 8]. As there are a large (exponential)

number of possible subsets, much of this literature only explores regular-shaped

subsets, such as circles and rectangles, in order to restrict the search space. To

our knowledge, only a few references have addressed techniques for detecting a

change point in a sensor network, where both the subset of sensor nodes and

the subset of weather variables that are impacted by the change point are un-

known [7, 8]. In particular, Neil explores space-time scan statistics to identify

the best combination of subsets sensor nodes and weather variables as the indi-

cator of a change point [7]. Jiang et al. explore joint sparse principle component

analysis (PCA) algorithms to identify the indicating subsets of sensor nodes and

variables for detecting a change point [8].

2) Statistical impact analysis. The impact of weather conditions (vari-

ables) on traffic conditions (e.g., speed, volume, travel time) was largely studied

using statistical analysis techniques based on linear or logistic regressions [9],

such as the impact of rainy weather on the speed variance of rural highways [10],

the impact of cold and snow on traffic volumes [11], the impact of snow on travel

time [12], and several others [13, 14]. Only a few references have studied the

impact of weather conditions using nonlinear techniques [15, 16]. In particular,

Mohammed et al. explore a mixture of linear regression models to study the

impact of weather events (e.g., rain, fog, haze) on congestion identification [15].

Martchouk and Mannering apply a first-order autoregressive model to study the

impact of weather events on travel time [16]. To our knowledge, there is limited

work that has studied the impact of rapid weather changes on traffic conditions.

3) Short-term traffic flow forecasting. A number of algorithms are avail-

able for traffic flow forecasting [17, 18]. Most of the algorithms have focused

on “one point” (or single road link) short-term traffic prediction that consid-

ered only the temporal domain and did not take into account the dependencies

between road links (spatial domain) [18]. These so-called univariate methods

are generally based on the use of time-series-based methods, such as the au-

toregressive integrated moving average (ARIMA) [19], back-propagation neu-

tral networks, nonparametric regressions, and several others [20]. Despite these

successes in single-point prediction, recent advances demonstrate that the multi-

point forecasting models that take into consideration “geographic advantage”

of urban network provide better prediction results, such as the spatio-temporal

(ST) ARIMA [21], generalized STARIMA [22], and our recently proposed spatio-

temporal random effects (STRE) model [18]. All the preceding forecasting mod-
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els assume that the distribution of traffic conditions does not change over time.

However, rapid weather changes will lead to change of distribution of traffic

flow. To our knowledge, there is no multi-point traffic flow forecasting model

that can deal with distribution changes. In the machine learning field, switching

state-space models are designed to model change of distributions [23], but the

integration of switching state-space models into existing traffic flow forecasting

models is nontrivial.

Table 1 Abbreviations

Symbol Meaning

T2M Temperature that is taken at 2 meters from surfaceTemperature
T9M Temperature that is taken at 9 meters from surface
TMC Traffic Message Channel
I-90 Interstate 90
MAD Mean Absolute Deviation
EMS Evaluated Mean Scan
PIC Pattern Instance Count
TS Test Statistics
GLRT Generalized Likelihood Ratio Test statistic

3 Weather Station and Traffic Message Channel
(TMC) real networks

In this section, we discuss the weather and traffic flow datasets that we used

during our experiments,and the modeling of the weather station netwrork graph

and the TMC network graph. The weather dataset was originally provided by

New York State Mesonet [24]. The traffic flow dataset was provided by the Na-

tional Performance Management Research Data Set (NPMRDS) and has been

made available by Albany Visualization and Informatics Lab (AVAIL) on behalf

of New York State Department of Transportation (NYSDOT) and University

Transportation Research Center (UTRC). In Section 3.1 and Section 3.2 we will

discuss the details of the Mesonet Weather Station Network and Traffic Message

Channel (TMC) Network, respectively.

3.1 Mesonet Weather Station Network

The New York State Mesonet consists of 125 stations across the state of New

York. Each station houses a suite of automated sensors, which sample the

sensors data every 3 to 30 seconds, then the data are packaged into 5-minute

averages and transmitted in real-time to a central facility located at University

at Albany (UAlbany). We selected 10 weather stations along the I-90 route, such

as Batavia, South Bristol, Waterloo, Jordon, Westmorland, Central Square,

Cold Brook, Sprakers, Cobleskill, Stephentown. Figure 1 shows locations of

weather stations (represented by red stars) on the map.
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Figure 1: Mesonet geographic locations

Based on the spatial neighborhood relationships of the selected weather sta-

tions, we modeled a graph viz. weather station graph, consisting weather sta-

tions as nodes in the graph and spatial neighborhood relationships between the

nodes as edges. We indexed the 10 selected weather stations 0 to 9, {“BATA”:0,

“SBRI”:1, “WATE”:2, “JORD”:3, “CSQR”:4, “WEST”:5, “COLD”:6, “SPRA”:7,

“COBL”:8, “STEP”:9}, as shown in Figure 2.

Figure 2: Weather station network modeling

3.2 Traffic Message Channel (TMC) Network

We have used the National Performance Management Research Data Set (NPM-

RDS). NPMRDS provides vehicle probe-based travel time data for passenger

autos and trucks. The real-time probe data were collected from a variety of

sources including mobile devices, connected autos, portable navigation devices,

commercial fleet, and sensors. NPMRDS includes historical average travel times

in 5-minutes increments on daily basis covering the National Highway System

(NHS). The data are divided into two parts. The first part is a Traffic Message

Channel (TMC) static file containing TMC information that does not change

frequently. The second part includes travel times and identifies roadways geo-

referenced to TMC location codes. The two datasets need to be combined in

GIS-based software to provide the full picture. We used the data provided by

NPMRDS which includes the traveling time of I-90 West and I-90 East routes.

The I-90 West route section includes 52 TMCs and the I-90 East route section
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Figure 3: Single TMC centroid point calculation example

includes 54 TMCs. Each TMC has a length of the channel and geographic

information of the channel where the geographic location coordinate is a poly-

gon. We calculated the TMCs centroid geographic coordinates (i.e. latitude

and longitude) and plotted them on the map. Figure 3 shows an example of the

centroid point of a polygon latitude and longitude coordinates. Figure 4 is the

map plot of I-90 West TMC centroid locations. The I-90 East TMCs map plot

has the same shape as that of I-90 West and therefore is not shown.

Figure 4: TMC centroid geographic locations of I-90 West route

We modeled the TMC networks for I-90 West route and I-90 East route into

two TMC network graphs separately, based on neighborhood relationships of

the TMCs. In each of the TMC network graphs the nodes represent TMCs and

edges represent the neighborhood relationships between the TMCs. Because of

the spatial structure of the TMC real network, we get two path graphs. Figure 5

shows the constructed graph of I-90 West (indexed the TMC with new ID 0 to

51) and I-90 East (indexed the TMC with new ID 0 to 53) TMC network.

Figure 5: I-90 West and I-90 East TMC network graphs
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3.3 Data Description

We have access to the weather and traffic data from Mar. 1, 2016 to Dec. 31,

2016, provided by Mesonet and NPMRDS. As discussed in Section 3.1 and Sec-

tion 3.2, we modeled both weather station network and I-90 TMC networks as

sensor graphs. The weather stations and TMCs both have records in 5-minutes

increments. This means each weather station packages 5 minute averages of

each weather variable and each TMC has the average traveling time for every

5 minutes. See Figure 6 for the examples of raw data (a) format of weather

station record and (b) format of TMC record. All the data are in ”.CSV”

file format. Mesonet weather data has Station ID, datatime (consists of date

and time which have 5 min time interval), 8 weather variables (T2M, T9M, rh,

avg wind speed etc.). The variables temp 2m and temp 9m in 6 are represented

by T2M and T9M throughout this report. NPMRDS data has TMC original

ID, epoch (or the time slots, i.e. epoch number 1 represents time 00:00am, 2

represents 00:05am, etc.), npmrds date, travelTime.

Figure 6: Mesonet and NPMRDS raw data formats

For the weather and traffic data, we have records of 5 min intervals for all

weather variables and TMC traveling time. We denote 5 min interval time as

a time slot (epoch), in total we have of 288 time slots for each day. A Mesonet

weather station records each weather variable every 5 minutes and obtains total

288 records per day. Similarly, each TMC has 288 traveling time records per

day.

3.3.1 Weather Data

We obtained the weather data from Mar. 1, 2016 to Dec. 31, 2016 (a total

of 306 days). For 10 selected stations, the complete data of the following 8

weather variables is available: T2M [degF], T9M [degF], Relative humidity [%],

Average wind speed [mph], Max wind speed [mph], Wind direction [degree],

Solar radiation [W/m2] and Station pressure [mbar].
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Extraction of daily data We pre-processed the raw data and extracted the

records of each variable. For each individual weather variable, we extracted the

daily data for 10 selected weather stations. Further, we generated a file that

includes 10 stations daily data. Figure 7 shows the weather variable T2M’s

values for 10 stations on Mar. 1, 2016. The 1st column is the weather station

ID, the following 288 columns are the records of 288 time slots. The cell(i, j)

represents the T2M values of ith weather station at jth time slot on Mar. 1,

2016. For all 8 weather variables, we followed the same process. At the end, for

each variable we got 306 files for 306 days and in total we had 8×306 i.e. 2448

files.

Figure 7: Mar. 1, 2016 processed data for T2M

Example Plots Each weather variables have different shapes of plots. To

show the visualization of our weather station network one day data, we give the

example plots in this section. In Figure 8 and 9 we show the example plots of

all 8 variables on Mar. 25, 2016.

3.3.2 Traffic Data

We have access to the traffic data from Mar. 1, 2016 to Dec. 31, 2016 (a total

of 306 days same as the weather data) for both I-90 East and I-90 West route.

For both, I-90 West and I-90 East route, we have the traffic traveling time data.

Extraction of daily data We pre-processed the raw traffic data in a similar

way to the weather raw data as explained earlier. For all TMCs in I-90 West

route, we extracted the average traveling time data, and we packaged it into a

file that includes I-90 West route TMC daily data. Figure 10 shows the average

traveling time for 52 TMCs on Mar. 1, 2016. The 1st column is the TMC new

ID, the following 288 columns are the records of 288 time slots. The cell (i, j)

represents the average traveling time values of ith TMC at jth time slot on Mar.

1, 2016. For TMCs in I-90 East route data, we followed the same process. At

the end, for each route, we got 306 files for 306 days and in total, we had 2×306

i.e. 612 files.

Example Plots In this section, we show an example plot for traveling time.

The following plot is an example of traveling time plot for I-90 West route on

Mar. 25, 2016 (see Figure 11). The x axis represent the time slots and the y axis
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(a) T2M [degF] (b) T9M [degF]

(c) Relative humidity [%] (d) Average wind speed [mph]

Figure 8: Weather data example plots

represent the Traveling Time values for each time slot. Each different colored

line represent the values of different TMCs.

4 Methodology and Proposed Approach

In this section, we will explain our proposed approach which consists of three

main components (See Figure 12):

1. Weather change event detection. Detection of change events from

multiple weather variables data.

2. Traffic change event detection. Detection of change events from single

traffic variable data.

3. Correlation study between rapid weather change and rapid traf-

fic change. Study of the correlation between weather change events and

traffic change events that are the result of our weather and traffic change

event detection.
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(a) Max wind speed [mph] (b) Wind direction [degree]

(c) Solar radiation [W/m2] (d) Station pressure [mbar]

Figure 9: Weather data example plots

Figure 10: Mar. 1, 2016 processed data for Traveling Time

The main goal of this work is to develop efficient techniques to detect rapid

weather changes in a highway road network using the streaming weather infor-

mation from a sensor network of weather stations. We also developed similar

techniques to detect (predict) traffic changes in TMC network. Further, we

studied the correlation between the weather and traffic change events.

4.1 Problem definition

Both weather station network and TMC network are time evolving dynamic

networks. Our main problem is to detect change events. A change event is

represented by a tuple of 1) a subset of nodes (weather stations or TMCs);

2) a subset of variables and 3) a time interval (a continuous sequence of time

slots) from the weather and traffic data. In this section, we will discuss the

9



Figure 11: Mar. 1, 2016 I-90 West Traveling Time plot

weather station network and the weather change event detection problem. Due

to the similarity of the problems and networks, the traffic change event detection

problem is analogous to the weather change event detection problem.

The sensor network is defined as G = (V,E, x) where V = {1, 2, ..., n} refers

to the set of sensor nodes (weather stations), E ⊆ V × V refers to the set of

edges, and x(v) is a mapping function: V→ Rd×T that returns a matrix storing

the measurements of d weather variables at node v for the time interval T (a

continuous time slots). The objective is to identify a change event character-

ized as a tuple (o,S,R) where o is a time window, S ⊆ V is a subset of stations

and R ⊆ {1, ...d} is a subset of variables, where (o = [ostart, oend],ostart and

oend is the starting and ending time slots of time window o). The detection

problem can be modeled using a hypothesis testing framework:

• Null hypothesis H0 (there is no change event): {x(i) | i ∈ V} ∼ D0(θ0),

where D0 refers to the distribution under the null hypothesis, and θ0 is

the parameter of this distribution.

• Alternative hypothesis H1(o,S,R) (there is a change event): {xti(v)

| v ∈ S, t ≥ ostart and t 6 oend, i ∈ R} ∼ D1(θ1), where D1 refers to a

new (or changed) distribution corresponding to the change event within

a given time window; {xti(v) | v /∈ S or t < ostart or i /∈ R} ∼ D0(θ0),

where t < ostart. It means that the values in the time window follow

D1(θ0) distribution and the historical values before this time window o

follow D0(θ1) distribution.

The change event detection problem can then be implemented in three fol-

lowing steps:

• Step 1: Application of Gaussian distribution to define D0 and D1 for the

hypothesis testing framework.
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Figure 12: Project architecture

• Step 2: Identification of the best possible change event (o,S,R) by solv-
ing the optimization problem:

(ô, Ŝ, R̂) = arg max
o,S,R

F (o,S,R) =
Prob(data | H1(o,S,R))

Prob(data | H0)
, (1)

where data = {x(i) | i ∈ V}. The numerator in Equation 1, refers to

likelihood of data under alternative hypothesis whereas, the denominator

refers to likelihood of data under null hypothesis. The ratio F (o,S,R) is

called generalized likelihood ratio test statistic (GLRT).

• Step 3: Estimation of the empirical p-value of estimated GLRT score:

F (ô, Ŝ, R̂) using bootstrap methods. If the empirical p-value is below a

predefined significance level (e.g., α = 0.05) then (ô, Ŝ, R̂) is returned as

a significant change event; otherwise, no change event is returned.

In our recent work, we have developed several efficient algorithms for optimizing

a general GLRT function in nearly-linear time in a univariate sensor network

(d = 1) [25, 26]. We will extend this work and design efficient algorithms to

optimize Problem (1) with d > 1.

4.2 Weather change event Detection

In previous Section 4.1, we discussed the formulation of our change event de-

tection problem. In this section, we will introduce our proposed algorithms to

detect the multi-variable weather change events. A weather change event is a

tuple of a connected subset of weather station nodes, a subset of rapid

change related weather variables and a time interval in which the rapid

change have occurred. We designed an invariant of Graph-MP method [25]

11



Figure 13: An example of weather change event detection

to address this problem in order to achieve a nearly-linear time complexity

and high accuracy. In Figure 13, the top sub-figure shows a time evolving at-

tributed graph for Mar. 17, 2016, in which each node is associated with multiple

attributes. The bottom sub-figure of Figure 13 shows a detected weather change

event. Figure 13 shows an illustrative example of weather change event detec-

tion which indicates that the time interval 16:55 to 18:20 on Mar. 17, 2016 at

weather stations COLD, SPRA and STEP rapid change occurred and involved

variables such as Solar Radiation, Relative Humidity, T2M, T9M, Average Wind

Speed, Max. Wind Speed.

Before explaining the details of the change event detection algorithm, we

would like to introduce several key notations:

• Time Window is a time interval that consists of continuous time slots

and has minimum and maximum length. See Figure 14 (a).

• Rapid weather change is defined as the weather variables of weather

station(s) that are rapidly decreasing or increasing in a given time window.

• Time Window Value (µwindow) is the mean value of data within the

time window.

• Historical Base Value (µbase) is the mean value of data over a given

number of time slots in past (just before the current time window).

• Changing value (∇µchange) represents the normalized value of the given

time window. The changing value is the difference between the mean of

12



the historical base and the mean of the time window, and it indicates the

changing level of the values in the time window, ∇µchange = |µwindow −
µbase|. See Figure 14 (b).

Figure 14: Time window conception

Algorithm 1 Single-Variable change event Detection

1: Input: D = {D1, · · ·DNum days}
2: A,s, min widnow,max widnow, hist base length;
3: Output: List of change events change event list;
4: change events← ∅;
5: time windows ←getAllPossibleTimeWindow(min window,max window);
6: for j = 1 to Num Days do
7: for k = 1 to time windows.Size do
8: hist base ← CalculateHistoricalBase(Dj , time windows[k],

hist base length);
9: X ← NormalizeWindow(Dj , time windows[k]);

10: X̂ ← |hist base−X|
11: result← GraphMP(A, X̂, s, EMS);
12: change event list.add(result.Score, result.SubsetNodes,

time windows[k], j);
13: end for
14: end for
15: cchange event list← RankBasedOnScore(change event list)
16: return change event list;

Algorithm 1 is our proposed single variable change event detection algorithm.

Algorithm 1 includes three main steps: 1) Normalization and calculation of

changing the value of a given time window; 2) Detection of the most anomalous

subset of the station(s) in a given time window and 3) Ranking the change event

results.

In Algorithm 1, the input data D = {D1, · · · , DNum days} includes daily

data of a single weather variable for whole weather station network. A is

the adjacency matrix, s is the upper bound of the maximum subset of nodes

(our algorithm will return at most 4*s nodes), min window and max window

are minimum time window size and maximum time window size respectively,

hist base length is the size of historical base time window.
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4.2.1 Normalization of Time Window

In Algorithm 1, at Line 5, all possible time windows for given minimum and

maximum size of the time window are generated. Outer loop at Line 6 loads

the daily data one by one. Inner loop at Line 7 iterates over all possible

time windows to test whether there exists a change event in any of these time

windows. At Line 8, calculates the historical base of the current time window,

which is mean of the values of previous time slots length with hist base length,

is calculated. By default, we have used last one hour (12 time slots just before

the current time window) data’s mean value as the historical base. At Line

9∼10, the values in current time window are normalized by calculating the

absolute difference of the mean values of current time window and historical

base of each node.

For normalization at each weather station node, we normalized the values

Figure 15: Cases of with and without Lag effect

in the given time window into a single changing value. To eliminate the lag

effect within the time window, we considered two cases when we calculated the

changing value:

• Case 1: Without a lag effect in the time window. In this case no

obvious changing point exists in the current time window. It means that,

there is no lag effect, and the changing value of the given time window is

equal to ∇µchange = |µwindow − µbase|. See Figure 15 (a).

• Case 2: With a lag effect in the time window. If there is a lag effect

in the time window, the mean value of the time window cannot represent

the true changing level of the window. To decrease the impact of the lag

effect to the value of time window, we need to find a breaking point that

splits the time window into two sub-windows viz. T1 and T2 (See Fig-

ure 15 (b)), such that, their mean values are µT1
and µT2

. This breaking

point guarantees that the difference of µT1
and µT2

is the maximum differ-

ence compared to the difference between the mean values in sub-windows

generated by any other breaking points. The changing value of the given

window is ∇µchange = max{|µT1
− µbase|, |µT2

− µbase|}.

Figure 16 shows a visualization example of the normalization step on the tem-

perature data for a given time window. In this example, after normalizing the

given time window, each weather station node has a changing value, which

represents the changing level of the weather station in the given time window.
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Figure 16: Time window value normalization for each node

Figure 17: An example of most anomalous subset of station(s) detection

4.2.2 Change event detection

After normalization of the time window data, each weather station node has

a changing value. Our problem is to find the most anomalous, connected sub-

set of weather stations such that, the summation of the changing values of

these weather station nodes is the maximum. To solve this problem we applied

the Evaluated Mean Scan Statistics (EMS) as the score function and Graph-

structured matching pursuit (Graph-MP) [25] method to detect a subset of sta-

tions that are spatially connected and their weather variables changed rapidly

within the time window.

• Evaluated Mean Scan (EMS) Statistics. In EMS statistics, we as-

sume there is a ground set V = {xi}n1 , xi is following Normal distribution

and S is some unknown anomalous cluster, where S ⊆ V . The aim is to

decide between the null hypothesis H0 : xi N(0, 1),∀i ∈ V and the alter-

native H1 : xi N(µ, 1),∀i ∈ S and xi N(0, 1),∀i ∈ V −S. So the EMS scan

statistics for a cluster S is:

EMS(S) =
1√
|S|

∑
i∈S

xi. (2)
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Under some conditions, the test of rejectingH0 for larger values of maxS⊆V :

EMS(S) is statistically optimal.

• Graph-MP method. Graph-MP is an efficient approximation algorithm.

Graph-MP can be applied to optimize a variety of graph scan statistic

models for the task of connected subgraph detection. We applied Graph-

MP algorithm to solve our problem. Graph-MP optimizes our objective

EMS score function and returns a subset of weather station nodes that

are connected with each other.

In Algorithm 1, at Line 11, Graph-MP takes the network graph adjacency

matrix A, normalized changing values of each node X̂, sparsity constraint s and

our main objective EMS score function as the input. The Graph-MP algorithm

will return a subset of connected nodes and their objective EMS score. If the

returned subset of nodes has a larger change level (overall changing amount of

the variable in the given time window) then its corresponding EMS score will

be larger, otherwise, the score will be smaller.

4.2.3 Ranking of the results

Ranking the change events. After running Algorithm 1 for all the data

and for all possible time windows, we obtained a list of candidate change events

with their corresponding EMS scores. In Line 15, the candidate change events

are ranked based on their EMS scores. The candidate change events with higher

EMS scores are most likely to be the true rapid change events.

Filtering the results. In the list of ranked candidate change events, if multi-

ple events overlap (if the time window of the events overlapped with each other

equal or greater than 80%) with each other on time intervals and have weather

station nodes in common, then only the event/s with the highest EMS score

among the overlapping events are kept.

4.3 Traffic change event Detection

We have two TMC network graphs for I-90 West and I-90 East (See Figure 5).

Both of these networks have a similar shape and each TMC has average traveling

time as an attribute. Since the Traffic change event detection is similar to the

single variable weather change event detection method, we can use Algorithm 1

to find all change events.

Compared to the single variable weather change event detection, the traf-

fic change event has different algorithm parameter settings and different time

window normalization step. We will discuss the parameter setting in Experi-

ments Section 5. Since the traveling time data has special change event shape,

we assume all time windows without lag effect. Currently, we only have the

data for traveling time available. If in the future, more traffic variables data

become available, then we can apply Algorithm 2 viz. Multi-variable change

event detection algorithm.
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Algorithm 2 Multi-Variable change event Detection

1: Input: D = {D1,1, · · · , D1,Num days, D2,1 · · · ,
DNum V ars,Num Days}

2: A,s, min widnow,max widnow, hist base length, threshold;
3: Output: List of change events change event list;
4: change event list← ∅;
5: time windows ← getAllPossibleTimeWindow(min window,

max window);
6: for j = 1 to Num Days do
7: for k = 1 to time windows.Size do
8: related vars← ∅;
9: X̂related ← ∅;

10: for i = 1 to Num var do
11: hist base ← CalculateHistoricalBase(Di,j ,

time windows[k],
hist base length);

12: Xi ← NormalizeWindow(Di,j , time windows[k]);
13: X̂i ← |hist base−Xi|
14: single var result← GraphMP(A, X̂i, s, EMS);
15: if single var result.Score > threshold[i] then
16: related vars.add(i);
17: X̂related.add(X̂i);
18: end if
19: end for
20: result ← MultiGraphMP(A, X̂related, s, related vars,

time windows[k],MultiEMS);
21: change event list.add(result.Score,

result.SubsetNodes, related vars, time windows[k], j);
22: end for
23: end for
24: change event list← RankBasedOnScore(change event list)
25: return change event list;

4.4 Multi-Variable change event Detection

In Section 4.2, we explained the single variable change event algorithm. In this

section, we will explain the multi-variable change event detection algorithm.

In the weather station network, each node is associated with multiple weather

variables, and we use Algorithm 2 to detect multiple variables related to weather

change event. Compared to Algorithm 1, Algorithm 2 has two main differences:

1) Selection of the subset of change event related variables; and 2)

Multi-GraphMP algorithm.

4.4.1 Selection of Related Variables

In Algorithm 2, the inner loop Line 10∼19, iterates over all the variables in the

given time window and separately runs the Graph-MP method for each variable.

In Line 11 Di,j indicates the jth day data matrix of ith variable for weather

station network graph. Line 15∼18 compare the EMS score of each variable

change event with their threshold EMS score. In a given time window if the
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EMS score of a variable change event is higher than the corresponding variable

EMS threshold score, then we assume this variable has a rapid change in the

current time window. Line 17 stores the changing values of ith variable for

current time window to the list X̂related.

Weather Variables Anomalous Threshold Score For each weather vari-

able data (for all available data from Mar. 1, 2016 ∼ Dec. 31, 2016) we run

Algorithm 1 separately and got a change event list for each variable. We calcu-

lated the median, mad (mean absolute deviation), min and max EMS scores

of each variable change event list separately. We set threshold(vari) =

mediani + 2 ∗ madi as the threshold score for each variable, where i in-

dicates the index of the variable, i = 0 ∼ 7. For a given time window, if the

EMS score of detected change event is equal to or greater than the threshold

EMS score, then this change event is most likely to be the true rapid change

event, as we call it change event related variable. Table 2 shows the threshold

of each weather variable.

Table 2 EMS Threshold Score of Weather Variables

Type median+2*mad median mad min max

T2M 12.52 5.78 3.37 1.01 30.48
T9M 11.47 5.43 3.02 1.02 29.98
Pressure 3.28 1.78 0.75 1.0 9.14
Avg. Wind Speed 10.6 7.28 1.66 5.5 29.45
Wind Direction 510.36 370.46 69.95 188.17 663.72
Max. Wind Speed 17.18 11.3 2.94 8.0 44.71
Relative Humidity 35.82 18.14 8.84 1.82 77.6
Solar radiation 888.87 518.03 185.42 1.0 1418.56

4.4.2 Multi-GraphMP algorithm

Algorithm 2, called Multi-Variable change event Detection (Multi-GraphMP)

Algorithm, is a variant of GraphMP algorithm. At Line 20 MultiGraphMP

takes A, the network adjacency matrix, X̂related, the changing values of related

variables in the current time window, related vars, an indices list of change

event related weather variables andMultiEMS, a variant of EMS score function

as input. The main difference between GraphMP and Multi-GraphMP is that in

Multi-GraphMP the EMS score is summation of the EMS score related variables

in a given set of nodes:

MultiEMS(S,R) =
∑
j∈R

EMS(S, j) =
∑
j∈R

∑
i∈S

1√
|S|

xi,j , (3)

where R is the list of variable indices and x corresponds to the variable X̂related,

xi,j represents the changing value of ith node jth variable in current time win-

dow. Line 20 MultiGraphMP returns the subset of nodes and its Multi-

EMS score. Line 21 adds a new detected changing result to the result list.

result.Score is the MultiEMS socre, result.SubsetNodes is the change event
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weather station node(s), related vars is a list indices of related variables, j is

the jth day and time window[k] is the time slot interval of the current time

window.

4.5 Correlation Study

Our another important task is to study the correlation between weather change

event and traffic change event. Is there any correlation between the

weather change events and the traffic change events? In this section, we

will introduce Test Statistic Function and Hypothesis Testing Method.

4.5.1 Problem definition

In Section 4.1, we defined the change event as a tuple (a subset of nodes, a

subset of variables, time slot). To study the correlation of weather and traf-

fic event, we generate the weather/traffic Event by splitting a weather/traffic

change event individual weather/traffic events. A general event is defined as:

[Event Type][Event Location][Event T ime].

The weather event is defined as:

(0,Weather Station Location,Occur T ime),

where “0” indicates the weather event type, the weather station location is the

latitude and longitude of weather stations. Event occur time consists of date

and time slot. e.g. we have a weather event (0, (43.02,78.34), 20160301230).

The occur time “20160301230” first 8 digits indicate the date Mar. 1, 2016 and

last 3 digits indicate the time slot 230 (i.e. 230 represents 19:10pm).

The traffic event is defined as:

(1, TMC Location,Occur T ime),

where “1” indicates traffic event type, TMC location is the latitude and

longitude of TMC. Event occur time consists of date and time slot. e.g.

(1,(44.22,76.18),20160301232).The occur time “20160301232” first 8 digits in-

dicates the date (Mar. 1, 2016) and last 3 digits indicates the time slot 232 (i.e.

232 represents 19:20pm).

We have given the definition of two types of events, and both types of events

have event type, event location and event occur time. Now we will give an

example that shows how we generate the events from the change events. For

example, we have a weather change event ([2,3,4],[6,7][120,121,122],20160505),

where [2,3,4] is a list of weather station indices, [6,7] is a index list of related

variables and [120,121,122] are continuous time slots, 20160505 is the date. To

generate weather events, we will split the weather change event into events. Af-

ter splitting above given example weather change event, we get a list of weather

events (in totally 9 weather events): (0, 2, 20160505120), (0, 2, 20160505121),

(0, 2, 20160505122), (0, 3, 20160505120), · · · , (0, 4, 20160505122).

19



Assume, we have n weather events and m traffic events. W = {ew1 , · · · , ewn }
is a set of weather events, and T = {et1, · · · , etm} is a set of traffic events, where

ewi = (0, ewi .location, e
w
i .time) and eti = (1, eti.location, e

t
i.time). We have only

two types of events, the weather events and traffic events. Now we can define

our hypothesis:

• Null Hypothesis(H0) The events of these two types are distributed in

the space and time independently.

• Alternative Hypothesis(H1) The events of these two types are dis-

tributed in the space and time dependently.

In the following two sections we will discuss the design of a statistical model to

test our hypothesis.

4.5.2 Correlation Statistic Function

We have two types of events, and these events only can occur at a specific

location, like the weather station locations or TMCs locations. Currently, we

have used Pattern Instance Count (PIC) [27], the number of pairs of events

(instance) of two different types within a given radius r.

Figure 18: An example of PIC score calculation

In Figure 18, assume there are two types of events A and B spatially dis-

tributed in the study region, and each event has its location information. To

calculate the PIC score for a set of events (including A and B), for each Type A

events we count the Type B events within the given radius r and the final PIC

score is the summation of all pair counts. The PIC(A Events,B Events, r)

score function has three inputs, where A Events is a set of A type of events and

B Events is a set of B type of events, and r is the testing radius. PIC score is

the number of pairs of events of two different types (e.g. Type A and B) within

a given radius r. In Figure 18 the radius of the red circle is r, and its center is a

Type A event (triangle symbol). To calculate the PIC score of this single event,

we need to count the Type B events within the circle, which is 4.
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Algorithm 3 Original PIC Algorithm

1: Input: W //set of weather events;
2: T //set of traffic event
3: r //testing geographic radius
4: Output: PIC score;
5: PIC = 0.0 ;
6: for i = 1 to W.Size do
7: for j = 1 to T.Size do
8: if Distance(W[i],T[j]) <= r then
9: PIC ← PIC + 1.0;

10: end if
11: end for
12: end for
13: return PIC;

Algorithm 4 PIC Spatio-Temporal Algorithm

1: Input: W //set of weather events;
2: T; //set of traffic event
3: rg; //testing geographic radius
4: rt; //testing time radius
5: Output: PIC score;
6: PIC = 0.0 ;
7: for i = 1 to W.Size do
8: for j = 1 to T.Size do
9: if Distance(W[i],T[j]) <= rg and |W[i].time− T[j].time| <= rt then

10: PIC ← PIC + 1.0;
11: end if
12: end for
13: end for
14: return PIC;

Algorithm 3 is the original algorithm to calculate PIC score for two spatially

distributed the event types. In this time evolving network graph each event has

the event geographic location and the event occur time. In our study, we treated

event occur time as another ”spatial coordinate”. If the geographic distance of

a pair of events is less than the given testing radius and the two events occur

time interval is less than the given time threshold (or the time radius), then we

can count this pair of events in the PIC score, otherwise, we can not count it in.

Algorithm 4 is the revised version Algorithm 3. In Line 9 we added the time

threshold, such that, the time interval of the weather event and traffic event

must be less than the time radius rt.

4.5.3 Hypothesis Testing

To test our null hypothesis we need a test statistic that will have different values

under the null hypothesis and the alternatives we care about. We then need to

compute the sampling distribution of the test statistic when the null hypothesis

is true. For some test statistics and some null hypotheses, this can be done ana-

lytically. The p-value is the probability that the test statistic would be at least
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as extreme as we observed if the null hypothesis is true. A permutation test

gives a simple way to compute the sampling distribution for any test statistic,

under the strong null hypothesis that a set of genetic variants has absolutely no

effect on the outcome.

Random Permeation Test is testing the Test Statistics (TS) of the original

data and the TS of randomly permuted data. Random permutation hypothesis:

• Null Hypothesis(H0) Random permutation has no effect to Test Statis-

tics.

• Alternative Hypothesis(H1) Random permutation changes Test Statis-

tics results.

Figure 19: Random permutation test statistics

In this correlation study, the Test Statistics is PIC score for a given radius r.

So, in this project in the correlation study, we used random permutation testing

to test our hypothesis. Now we are reformulating our main hypothesis:

• Null Hypothesis(H0) The weather events and traffic events have corre-

lation in a given radius r.

• Alternative Hypothesis(H1) The weather events and traffic events are

randomly distributed within the given radius r.

We have a set of weather events W = {ew1 , · · · , ewn }, and a set of traffic

events T = {et1, · · · , etm} and All Events = T ∪ W. Similar to the process

in Figure 19, we did the random permutation process by randomly swapping

the event location coordinates in the All Events set. We set the original data

as Data0 = (W,T), and we did random permutation process to the original

data Data0 p times. We got p data set {Data1, Data2, · · · , Datap}, where

Datai = (Wi,Ti). For a given radius r, the p value of the test statistic is the

ratio of random permutation data sets whose test statistic scores are not less

than the test statistic of the original data Data0 set:

p value =

p∑
i=1

I(PIC(Data0, r) 6 PIC(Datai, r))

p
, (4)

where r is the test radius, I(PIC(Data0, r) 6 PIC(Datai, r)) is a indicator

function, if the inequality is true, then it returns 1, otherwise 0. PIC(Datai, r)

is the PIC score of the Datai for the given radius r.
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We proposed the Algorithm 5, entitled the Network based Random Per-

mutation Test Statistic Algorithm, to testify our hypothesis. The inputs

of the algorithm are a set of weather events W, a set of traffic events T, the

testing geographic radius rg and the time radius rt. The output is the p value.

Line 5 calculates the Test Statistic Score of original data W,T. Line 7∼16

the outer loop repeats the random permutation test max permutatio nnum

times. Line 8∼9 in each iteration the location of the events in original set is

randomized and randomly permuted new event set is obtained. Line 10∼11

regroups the new event set into the weather event set and traffic event set (both

sets are randomly mixed types of events). Line 12 calculates the randomly

permuted data Test Statistic score. Line 13∼15 if the randomly permuted

data Test Statistic score is equal to or greater than the Test Statistic score

then the ”total greater score num” is increased by one. Line 17 calculates the

p value.

Algorithm 5 Network based Random Permutation Test Statistic
Algorithm

1: Input: W = {ew1 , · · · , ewn } //weather event set
2: T = {et1, · · · , etm} //traffic event set
3: rt, rg,max permutation num
4: Output: p value ;
5: Test Statistic Score← PIC(W,T, rt, rg)
6: total greater score num← 0.0
7: for i = 1 to max permutation num do
8: All Events←W ∪ T;
9: All Events← RandomlySwapLocation(All Events);

10: W̃← All Events[1 : n]
11: T̃← All Events[n + 1 : n + m]
12: Random Test Statistic Score← PIC(W̃, T̃, rt, rg)
13: if Test Statistic Score 6 Random Test Statistic Score then
14: total greater score num← total greater score num + 1.0;
15: end if
16: end for
17: p value← total greater score num

max permutation num

18: return p value;

5 Experiments and Discussions

In this section, we will discuss how we designed the real-world data experiments

and show the experiment results. We will also analyze the empirical results of

the experiments and argue the limitations of our work.

5.1 Experiments

In this section, we will discuss the experiment results of the weather change

event detection, the traffic change event detection and the correlation study

between the weather event and the traffic event.
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Figure 20: Time-lag effect across the state from West to East [T2M]

Figure 21: Time-lag effect across the state from West to East [Average Wind
Speed]

5.1.1 Time-Lag Effect and Detection

We observed some interesting rapid changes from the weather data plots. Fig-

ure 20 shows one example plot for the time-lag effect of T2M change on Apr.

12, 2016. Interestingly Figure 21 shows the corresponding time-lag effect of Av-

erage Wind Speed change at the same time on Apr. 12, 2016. The temperature

(wind speed) changes across the New York state from West to East. The figure

shows that the temperature (wind speed) is dropping down (increasing) one by

one on time line from western weather stations to eastern weather stations.

Figure 22: Time-lag effect change event detection

Our proposed method can detect the time-lag effect in rapid weather change

detection. If there exists a time-lag effect, then it will be returned as a list of

change events. Figure 22 shows the change events corresponding to Figure 20,

which shows a time lag effect occurred on Apr. 12, 2016. The (a) subplot in
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Figure 22 shows that weather station BATA has a rapid change in temperature

when it dropped down very quickly in the time interval 3:30 am ∼ 3:55 am.

In the plot, we used two red dashed vertical lines to indicate the time window

of change event. The (b) subplot shows that two hours later, weather stations

SBRI, WATE, JORD, and CSQR also have a rapid weather change in temper-

ature when the temperature dropped down very quickly in the time interval

5:50 am ∼ 7:10 am. And the (c) subplot shows that weather stations WEST,

COLD, SPRA, and COBL have a rapid weather change in temperature, and

the temperature dropped down very quickly in the time interval 8:25 am ∼ 9:55

am.

Figure 23: Weather change event detection Case 1

5.1.2 Weather Change Event Detection

In the weather change event detection experiment, we used 8 weather variables

data from Mar. 1, 2016 to Dec. 31, 2016 (in total 306 days). As discussed in

Section 4.3, in our weather change event detection experiment we applied Al-

gorithm 2 viz. Multi-variable Change Event Detection Algorithm. Algorithm 2

iteratively loads 306 days data of multi-variables and returns a list of change

events ranked by their EMS scores. The top ranked change events are most

likely to be the true rapid changes.

For each input parameters of Algorithm 2 we tried several different settings.

The weather change events do not have ground truth, so we tried different

combinations of parameters, s = {2, 3}, min window = 3, max window =

{6, 12, 18, 24, 36} and hist base length = {6, 12}. After manually checking the

true positive change events and false positive change events in the returned top

change events, we selected the parameter combination that returned the highest

precision score of change events list. So, we set the upper bound s to 2 (our

algorithm returns at most 4 ∗ s nodes). We set the minimum and maximum

time window size min window and max window to 3 and 18 respectively, the

size of historical base time window hist base length to 12.
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Now we show several case study plots of the multi-variable change event

detection experiment:

Case 1 change event: COLD, SPRA, STEP, Radiation, Relative Humidity,

T2M, Average Wind Speed, 20160317, 16:55∼18:20.

Figure 24: Weather change event detection Case 2

In Case 1 (see Figure 23), there are four plots for four change event related

variables viz. the Solar Radiation, T2M, Average Wind Speed and Relative

Humidity. The vertical red dash lines indicate the time intervals in which the

rapid change occurred. In plots, each different color line represents the values of

different stations. Within the time interval 16:55 ∼ 18:20 on Mar. 17, 2016, the

Solar Radiation at COLD and SPRA has increased and at STEP weather station

it has decreased. The temperature at COLD and STEP has dropped down

and at SPRA it has increased. Average Wind Speed at COLD and STEP has

increased and at SPRA it has decreased. The Relative Humidity at COLD has

increased, at SPRA and STEP it has decreased. We call the value of a variable

has decreased or increased within a time window based on the comparison of

its time window value and the historical base value.

Case 2 change event: BATA, SBRI, WATE, Radiation, Relative Humidity,

T2M, Average Wind Speed, 20160328, 18:10∼19:35.

In Case 2 (see Figure 24), there are four plots for weather change event

related variables and at BATA, SBRI, WATE the rapid weather change have

occurred within the time interval 18:10 ∼ 19:35 on Mar. 28, 2016. We can

see from the plots, the radiation has obviously dropped down very quickly and

temperature has also dropped down for all three weather stations. At BATA

the Average Wind Speed has decreased and at SBRI, WATE the Average Wind

Speed has increased. At all three stations, the Relative humidity has increased.

Case 3 change event: WATE, JORD, WEST, Radiation, Relative Humidity,

T2M, 20160529, 18:15∼19:35.
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In Case 3 (see Figure 25), there are three plots for weather change event

related variables and WATE, JORD, WEST are the weather stations where

rapid weather change have occurred within the time interval 18:15 ∼ 19:35 on

May 29, 2016. From this figure, we can see the obvious weather change events

similar to the previous two cases.

Figure 25: Weather change event detection Case 3

5.1.3 Traffic Change Event Detection

In the traffic change event detection experiment we used the traffic traveling

time data for I90 East and I90 West from Mar. 1, 2016 to Dec. 31, 2016 (in

total 306 days). As we described in Section 4.2, in traffic change event detection

experiment we applied Algorithm 1 viz. Single Variable Change Event Detection

Algorithm. In Algorithm 1 we iteratively loaded 306 days data of traveling time,

and the algorithm returned a list of change events ranked by their EMS scores.

The top ranked change events are most likely to be the true rapid changes.

For the parameters of Algorithm 1 we tried several different settings. The

traffic change events also do not have ground truth, so we tried different

combinations of parameters, s = {2, 3}, min window = 3 max window =

{6, 12, 18, 24, 36} and hist base length = {6, 12}. After manually checking for

the true positive change events and false positive change events in the returned

top change events, we selected the parameter combination that returned the

highest precision score of change events list. So, we set the upper bound s to

3 (our algorithm returns at most 4 ∗ s nodes). We set the minimum time win-

dow min window and maximum time window max window sizes to 3 and 18

respectively, the size of historical base time window hist base length to 12.

From the top change event results we removed the outlier change events

related to only one TMC with traveling time greater than 3600 seconds (one

hour). Now we show several Case study plots of the single variable change event

detection experiment for I90 East and I90 West data.

Case 1 I90 East change event: TMC-46, TMC-47, TMC-48, TMC-49, TMC-

50, TMC-51, 5 min Average Traveling Time, 20161214, 19:20∼20:40.
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In Case 1 (see Figure 26), at 19:20∼20:40 on Dec. 14, 2016 the traveling

times for I90 East TMC-46 ∼ TMC-51 were rapidly increasing.

Figure 26: I90 East traffic change event detection experiment Case 1

Case 2 I90 East change event: TMC-40, TMC-41, 5 min Average Traveling

Time, 20160916, 9:50∼11:10.

In Case 2 (see Figure 27), at 9:50∼11:10 on Sep. 16, 2016 the traveling times

for I90 East TMC-40 and TMC-41 were rapidly increasing.

Figure 27: I90 East traffic change event detection experiment Case 2

Case 3 I90 East change event: TMC-18, TMC-19, TMC-20, TMC-21, TMC-

22, TMC-23, TMC-24, TMC-25, TMC-26, TMC-27, TMC-28, 5 min Average

Traveling Time, 20161215, 15:35∼17:00.
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In Case 3 (see Figure 28), at 15:35∼17:00 on Dec. 15, 2016 the traveling

times for I90 East TMC-18 ∼ TMC-28 were rapidly increasing.

Figure 28: I90 East traffic change event detection experiment Case 3

Case 4 I90 West change event: TMC-45 , TMC-46 , TMC-47 , TMC-48 ,

TMC-49, 5 min Average Traveling Time, 20161214, 19:25∼20:35.

In Case 4 (see Figure 29), at 19:25∼20:35 on Dec. 14, 2016 the traveling

times for I90 West TMC-45 ∼ TMC-49 were rapidly increasing.

Figure 29: I90 West traffic change event detection experiment Case 4

Case 5 I90 West change event: TMC-17, TMC-18 , TMC-19, TMC-20,

TMC-21, TMC-22, TMC-23, TMC-24, TMC-25, TMC-26, TMC-27, 5 min Av-

erage Traveling Time, 20161215, 15:35∼17:00.
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In Case 5 (see Figure 30), at 15:35∼17:00 on Dec. 15, 2016 the traveling

times for I90 West TMC-17 ∼ TMC-27 were rapidly increasing.

Figure 30: I90 West traffic change event detection experiment Case 5

Case 6 I90 West change event: TMC-45 , TMC-46, 5 min Average Traveling

Time, 20161214, 16:45∼17:00.

In Case 6 (see Figure 31), at 16:45∼17:00 on Dec. 14, 2016 the traveling

times for I90 West TMC-45 and TMC-46 were rapidly increasing.

Figure 31: I90 West traffic change event detection experiment Case 6

From the above top ranked change events, we can see that the shapes of

traffic change events of neighborhood TMCs are very similar and the rapid

changes are quite obvious.
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5.1.4 Correlation Study

As we discussed in Section 4.5, we used Top K change event results of both the

weather and traffic (includes I90 West and I90 East route results) change event

detection experiments to generate the weather events and the traffic events.

To determine the values of K for weather change event results and I90 East

and I90 West change event results, we calculated the median and mad (mean

absolute deviation) of the EMS scores of each group of results separately. We

set the value of K to the number of change events that have EMS scores greater

than median + 2 ∗ mad. We obtained K=103 for the weather change event

results, K=33 for the I90 East route change event results and K=29 for the I90

West route change event results. Table 3 shows Top 103 weather change events,

Table 4 shows the Top 33 I90 West traffic change events and Table 5 shows the

Top 29 I90 East traffic change events.

Table 3 Top Ranked Weather Change Event List

Rank Weather Variables Weather Stations Date Time Slot

1 T2M, T9M, Average Wind Speed, Max.
Wind Speed, Relative Humidity

SBRI, WATE, JORD, CSQR 20160908 172∼186

2 T2M, T9M, Average Wind Speed, Max.
Wind Speed, Relative Humidity

CSQR, COLD, SPRA, STEP 20160317 171∼188

3 T2M, T9M, Average Wind Speed, Max.
Wind Speed, Relative Humidity

SBRI, WATE, JORD, CSQR 20161119 164∼178

4 T2M, T9M, Average Wind Speed, Max.
Wind Speed, Relative Humidity

JORD, CSQR, WEST, SPRA 20160402 181∼197

· · · · · · · · · · · · · · ·
102 T2M, T9M, Relative Humidity SBRI, WATE, JORD, WEST 20160906 225∼240
103 T2M, T9M, Relative Humidity WATE, JORD, CSQR, COLD 20160526 142∼159

Table 4 I90 West Top Ranked Traffic Change Event List

Rank TMC List Date Time Slot Interval

1 TMC-45, TMC-46, TMC-47, TMC-48,
TMC-49

20161214 233∼247

2 TMC-17, TMC-18, TMC-19, TMC-20,
TMC-21, TMC-22, TMC-23, TMC-24,
TMC-25, TMC-26, TMC-27

20161215 187∼204

3 TMC-45, TMC-46 20161214 201∼203
· · · · · · · · · · · ·
28 TMC-9, TMC-10, TMC-11 20160508 139∼156
29 TMC-8, TMC-9 20160917 113∼130

After selecting the Top K weather weather change events and Top K traffic

change events, we used them to generate the weather events and traffic events

by applying the method introduced in Section 4.5.1. We obtained 5755 weather

events and 3657 traffic events (total events of I90 East and I90 West route).

Each event has Event Type, Latitude, Longitude, Time and Station or TMC

ID. We re-indexed the Weather Station IDs from 100 to 109, I90 East TMC

IDs from 200 to 253 and I90 West TMC IDs from 300 to 351. For example,

consider an event (Event Type :0, Location: (42.75, -77.36), Date and Time

slot:(20160908,172), ID:101). This is a weather event that occurred at weather
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Table 5 I90 East Top Ranked Traffic Change Event List

Rank TMC List Date Time Slot Interval

1 TMC-46, TMC-47, TMC-48, TMC-49,
TMC-50, TMC-51

20161214 232 ∼ 247

2 TMC-40, TMC-41 20160916 118∼ 134
3 TMC-18, TMC-19, TMC-20, TMC-21,

TMC-22, TMC-23, TMC-24, TMC-25,
TMC-26, TMC-27, TMC-28

20161215 187∼204

· · · · · · · · · · · ·
31 TMC-8, TMC-9, TMC-10 20160514 232∼249
32 TMC-27, TMC-28, TMC-29, TMC-30,

TMC-31, TMC-32, TMC-33, TMC-34,
TMC-35, TMC-36, TMC-37

20160403 233∼ 250

33 TMC-1, TMC-2 20160920 86∼101

station with ID 101 and the geographic location coordinate of the station is

(42.75,-77.36), the event time consists of date Sep. 8, 2016 and time slot 172

(14:20 PM).

In the correlation study experiment, we applied the Algorithm 5 (Network

based Random Permutation Test Statistic Algorithm). Algorithm 5

takes the weather events, traffic events and maximum permutation number pa-

rameter max permutation num=500 as input. For the geographic radius rg we

tested {5, 10, 15, · · · , 45} (the unit is miles) and for the time radius rt we tested

{1, 2, 3, 4, 5} time slots (or {5, 10, 15, 20, 25} minutes). Based on our assumption

and PIC spatial pairwise correlation statistic, if two events have correlation on

the given fixed radius (or distance), then we expect the p-values to be minimum

at the given geographic radius and time radius.

Figure 32 shows the results of our correlation study experiments. When the

geographic radius is less than or equal to 10 miles, the random permutation

test returned the minimum p-values. The weather event and traffic event have

a correlation in given radius less than or equal to 10 miles.

Figure 32: Correlation study experiment result
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5.2 Discussions and Limitations

In this project, our main goal was to detect change events from a weather sta-

tion network and the TMC network, further, we used detected change events to

examine the correlation between rapid weather change events and rapid traffic

change events. To the best of our knowledge, this is the first work to study the

relations between rapid weather change and rapid traffic change. The previ-

ously existing methods input the weather or traffic data into the model without

considering the spatio-temporal rapid changes of the data. We modeled the

weather stations and TMCs into a network graph and found a new approach to

view the raw data. We also discovered more interesting rapid changes from the

raw data (see Section 5.1.1).

We conducted comprehensive experiments and determined the best param-

eter settings for our proposed change event detection algorithms. In our change

event detection experiment, our two main proposed algorithms Algorithm 1 viz.

single variable change event detection algorithm and Algorithm 2 viz. multi-

variable change event detection algorithm performed very well. In Section 5.1.2

and Section 5.1.3 we showed the top k results of our change event experiments

and manually justified each of the top K change events.

In the correlation study, the input data of the experiment comes from previ-

ous change event detection experiments. We have already discussed the quality

of change events. We manually checked and ensured that all of the change events

are obvious change events. We tried different parameter settings when we run

Algorithm 5 to obtain expected results. When the testing geographic radius is

less than or equal to 10 miles, the p-values are lower than 0.03. What would

be the impact of the final results of change event detection experiments on the

correlation study experiment? We used Mesonet weather data and NPMRDS

Traffic data, however, both datasets have missing values. To reduce the effect

of missing data on the result of change event detection, we set the previous time

slot value (for which the data are available) as the value for the time slot with

missing data, so the new extrapolated data values and the historical base values

have the same or close value. This data interpolation process diminishes the ef-

fect of the missing data. Also, we only have data from Mar. 2016 to Dec. 2016

for both weather and traffic datasets. We believe that access to a larger dataset

e.g. data for two or more years of time, having more variables e.g. average

vehicle speed, I90 accidents etc. in case of traffic data and precipitation, snow

coverage, visibility distance etc. in case of weather data will improve the accu-

racy of our experiments. Also, getting data from weather stations that are close

to I90 routes will provide us with more reliable input and further improve the

accuracy of our technique. Further, getting the ground truth for weather and

traffic change events or finding more suitable distributions in our assumptions

in the hypothesis tests will lead to more accurate and convincing results.
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6 Conclusion

The goal of this project is to study the correlation between rapid weather change

events and rapid traffic change events by using graph based change event detec-

tion algorithms. We also designed a new network based random permutation

method to study the spatio-temporal correlations of the weather events and

the traffic events. We proposed three novel algorithms: Algorithm 1 is a sin-

gle variable change event detection algorithm; Algorithm 2 is a multi-variable

change event detection algorithm and Algorithm 5 is a network based random

permutation test statistic algorithm.

We used the weather data and traffic data in our network based spatio-

temporal model and found a new angle to analyze the weather data and traffic

data. Our case study experiment results showed that our proposed algorithms

performed very well. The proposed research showed the feasibility of using

weather data and traffic data to detect the traffic condition change during ad-

verse weather conditions in real-time or further, predict the traffic condition

change during adverse weather conditions. In Experiments Section 5, we can

see that the proposed change event detection algorithms, Algorithm 1 and 2, are

very flexible and we can use the same change event detection methods to 8 dif-

ferent weather variables data and also the traveling time data. The experiment

results show high quality change events. Also, our correlation study experiment

shows the reasonable results. When the testing radiuses are less than or equal to

10 miles, our random permutation test statistic return the minimum p-values,

which indicates the weather events and traffic events have a high correlation

when their distances are less than or equal to 10 miles..

The methodology used in this research promises a way forward for the de-

velopment of techniques to be applied to real-time data feeds. By applying our

technique to real-time 5-minute weather observations and real-time 5-minute

traffic data, we anticipate the ability to alert traffic operations staff, decision

makers, and the public, to upcoming conditions. Further research will exam-

ine the relationship between conditions identified using our rapid-change algo-

rithm with weather and traffic data, and recorded incidents, to inform safety

researchers and transportation planner.
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